Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Ping Shen ${ }^{a}$ and Ai-Hua Yuan ${ }^{\text {b }}$

${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China

Correspondence e-mail:
xiaopingshen@163.com

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.060$
$w R$ factor $=0.108$
Data-to-parameter ratio $=17.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(N,N-dimethylformamide- κ O)bis[1-phenyl-3-methyl-4-benzoyl-1H-pyrazol-5(4H)-onato$\left.\kappa^{2} O, O^{\prime}\right]$ nickel(II)

In the crystal structure of the title complex, $\left[\mathrm{Ni}\left(\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$ or $\left[\mathrm{Ni}(\mathrm{PMBP})_{2}(\mathrm{DMF})_{2}\right]$, where HPMBP is 1-phenyl-3-methyl-4-benzoyl-1 H -pyrazol-5 $(4 H)$-one, the $\mathrm{Ni}^{\text {II }}$ atom, which lies on an inversion centre, is six-coordinated in a distorted octahedral coordination environment by coordinating four O atoms from two symmetry-related chelating bidentate PMBP ligands and two O atoms from two symmetry-related DMF ligands.

Comment

Many β-diketonate complexes, such as acetylacetonate, hexafluoroacetonate, 1,1,1-trifluoro-3-(2-theny)acetonate and benzoylacetonate (Dong et al., 1999; Li et al., 1999, 2003), have been reported. 1-Phenyl-3-methyl-4-benzoyl-1 H -pyrazol$5(4 H)$-one (HPMBP) has also been widely studied as an extractant and chelating agent of metal ions (Okafor, 1981; Barkat et al., 2004). Recently, PMBP-metal complexes have attracted the attention of chemists because of the potentially biological activities of these compounds, for example, as antibacterial, antimalarial and antiviral agents (Xu et al., 2003). However, few PMBP-metal complexes have been structurally characterized (Miao et al., 1991; Xu et al., 2003). We report here the preparation and the crystal structure of the title complex, $\left[\mathrm{Ni}(\mathrm{PMBP})_{2}(\mathrm{DMF})_{2}\right]$, (I).

(I)

Fig. 1 shows the coordination geometry of the nickel(II) centre in (I) and Fig. 2 shows the crystal packing. The complex molecule has a centre of symmetry, with the $\mathrm{Ni}^{\mathrm{II}}$ atom lying on an inversion centre. The coordination geometry of the $\mathrm{Ni}^{\mathrm{II}}$ atom is distorted octahedral; it is coordinated equatorially by four O atoms from two symmetry-related chelating bidentate PMBP ligands, and axially by two O atoms from two symmetry-related DMF molecules. The $\mathrm{Ni}-\mathrm{O}$ bond lengths in

Received 26 July 2004
Accepted 2 August 2004
Online 7 August 2004

The coordination geometry of the $\mathrm{Ni}^{\mathrm{II}}$ atom in (I), with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are related by the symmetry operator $(-x,-y,-z)$.
the axial positions are 2.0776 (19) \AA, slightly longer than the $\mathrm{Ni}-\mathrm{O}$ distances [2.0320 (17) and 2.0442 (17) \AA] in the equatorial positions. The $\mathrm{O}-\mathrm{Ni}-\mathrm{O}$ angles [87.68(7)-92.32(7) ${ }^{\circ}$] are close to 90°.

The $\mathrm{N} 1-\mathrm{N} 2, \mathrm{~N} 1-\mathrm{C} 13, \mathrm{C} 13-\mathrm{C} 14$ and $\mathrm{C} 14-\mathrm{C} 16$ bond lengths in the pyrazole ring are in the range 1.373 (3)1.437 (3) A, showing partial double-bond character. The shorter N2-C16 bond length in the pyrazole ring [1.308 (3) Å] shows a relatively stronger double-bond character. The C14-C15 [1.407 (3) Å] and N1-C1 [1.421 (3) A] bond lengths also suggest partial double-bond character. The $\mathrm{O} 1-\mathrm{C} 13 \quad[1.263(3) \AA]$ and $\mathrm{O} 2-\mathrm{C} 15 \quad[1.259(3) \AA]$ bond lengths are longer than O3-C20 [1.227 (3) A] in DMF. All of these data illustrate the characteristic large conjugation system of PMBP in (I).

The pyrazole ring is nearly planar, with a maximum deviation of 0.0056 (15) \AA for atom C13. The maximum deviations from the C1-C6 and C7-C12 phenyl ring planes are 0.006 (2) \AA for atom C4 and 0.0087 (19) \AA for atom C7. The three rings (two phenyl rings and one pyrazole ring) of one PMBP ligand are not coplanar. The dihedral angle between the two phenyl planes is $81.50(9)^{\circ}$. The dihedral angles between the pyrazole plane and the C1-C6 and C7-C12 phenyl planes are 12.95 (15) and $88.01(9)^{\circ}$, respectively. The $\mathrm{O} 1, \mathrm{O} 2$, and $\mathrm{C} 13-\mathrm{C} 15$ atoms are almost coplanar, with a maximum deviation of 0.0272 (16) \AA for atom C15. The dihedral angles between the O1/O2/C13-C15 plane and the pyrazole, C1-C6 phenyl and C7-C12 phenyl rings are 2.07 (14), 13.89 (14) and $86.24(9)^{\circ}$, respectively, suggesting that the pyrazole and $\mathrm{C} 1-\mathrm{C} 6$ phenyl rings, with their low twisting angles, participate in the π delocalization of the β-diketonate enol ring.

Experimental

An aqueous solution $(10 \mathrm{ml})$ of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.291 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added to an ethanol solution (10 ml) of HPMBP $(0.556 \mathrm{~g}$,

Figure 2
The crystal packing in (I).
$2.0 \mathrm{mmol})$. The mixture was adjusted to pH 6 with an NaOH aqueous solution and was stirred for 30 min at room temperature. The green precipitate that formed was filtered off and washed with a small amount of ethanol. The products were recrystallized from DMF at room temperature and well shaped single crystals suitable for X-ray diffraction analysis were obtained after two weeks. Analysis found: C 63.19, H 5.33, N 11.04%; calculated for $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{NiO}_{6}$: C 63.26, H 5.31, N 11.07%.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
$M_{r}=759.47$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=10.048$ (2) A
$b=9.3746(19) \AA$
$c=19.101$ (4) \AA
$\beta=90.87$ (3) ${ }^{\circ}$
$V=1799.0(6) \AA^{3}$
$Z=2$

Data collection

Rigaku Mercury CCD diffractometer
ω scans
Absorption correction: multi-scan
(North et al., 1968)
$T_{\text {min }}=0.765, T_{\text {max }}=0.928$
13949 measured reflections

Refinement

[^0]$D_{x}=1.402 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4719
reflections
$\theta=3.0-27.5^{\circ}$
$\mu=0.60 \mathrm{~mm}^{-1}$
$T=193.2 \mathrm{~K}$
Block, green
$0.42 \times 0.40 \times 0.12 \mathrm{~mm}$

> 4093 independent reflections 3708 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.040$
> $\theta_{\max }=27.5^{\circ}$
> $h=-13 \rightarrow 11$
> $k=-12 \rightarrow 12$
> $l=-21 \rightarrow 24$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0253 P)^{2}\right. \\
\quad+2.859 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.27 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}
\end{gathered}
$$

metal-organic papers

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Ni1-O1	$2.0320(17)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.404(3)$
$\mathrm{Ni} 1-\mathrm{O} 2$	$2.0442(17)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.421(3)$
$\mathrm{Ni} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.0776(19)$	$\mathrm{N} 2-\mathrm{C} 16$	$1.308(3)$
$\mathrm{O} 1-\mathrm{C} 13$	$1.263(3)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.437(3)$
$\mathrm{O} 2-\mathrm{C} 15$	$1.259(3)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.407(3)$
$\mathrm{O} 3-\mathrm{C} 20$	$1.227(3)$	$\mathrm{C} 14-\mathrm{C} 16$	$1.434(3)$
$\mathrm{N} 1-\mathrm{C} 13$	$1.373(3)$		
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 1^{\mathrm{i}}$	180	$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O} 3^{\mathrm{i}}$	$87.75(7)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2$	$92.32(7)$	$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 3$	$91.45(8)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2^{\mathrm{i}}$	$87.68(7)$	$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O} 3$	$92.25(7)$
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O}^{\mathrm{i}}$	180	$\mathrm{O}^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 3$	180
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O}^{\mathrm{i}}$	$88.55(8)$		

Symmetry code: (i) $-x,-y,-z$.
H atoms were placed in idealized positions and refined in a ridingmodel approximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ (phenyl rings and C20), and $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ (methyl).

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of the Education Commission of Jiangsu Province (grant No. 01 KJB150010), People's Republic of China.

References

Barkat, D., Kameche, M., Tayeb, A., Benabdellah, T. \& Derriche, Z. (2004). Phys. Chem. Liq. 42, 53-61.
Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Dong, Y. B., Smith, M. D., Layland, R. C. \& zur Loye, H.-C. (1999). Inorg. Chem. 38, 5027-5033.
Li, B. L., Zhou, J. Z., Duan, C. Y., Liu, Y. J., Wei, X. W. \& Xu, Z. (1999). Acta Cryst. C55, 165-167.
Li, B. L., Zhu, L. M., Wang, S. W., Lang, J. P. \& Zhang, R. (2003). J. Coord. Chem. 56, 933-941.
Miao, F. M., Liu, X. L. \& Li, Y. Q. (1991). Chin. Inorg. Chem. 7, 129-132.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Okafor, E. C. (1981). Spectrochim. Acta Part A, 37, 945-950.
Rigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xu, H. Z., Zhang, X. \& Wang, J. L. (2003). Chin. J. Appl. Chem. 20, 250-253.

[^0]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
 $w R\left(F^{2}\right)=0.108$
 $S=1.10$
 4093 reflections
 241 parameters
 H -atom parameters constrained

